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Abstract: IQ scores are often used to predict school performance. However, for children with learning
disabilities, the predictive validity of IQ scores appears to be low. In the fourth and fifth versions of
the Wechsler Intelligence Scales for Children (WISC), new ancillary indices were introduced. The
General Ability Index (GAI) is a broad measure of fluid reasoning with verbal, visual–spatial, and
figural test items. By contrast, the Cognitive Proficiency Index (CPI) combines different executive
functions known to be frequently affected in children with dyslexia, ADHD, or combined learning
disorders. To date, there is little evidence to demonstrate that these measures improve the prediction
of school performance beyond the Full-scale IQ (FSIQ). We therefore used lasso regression to explore
the predictive validity of these measures for school grades. The analyzed samples were taken from
the German standardization samples of the WISC-IV and the WISC-V. In most cases, the prediction
of school performance was not considerably improved by taking the GAI or the CPI into account.
However, when the individual discrepancy between the CPI and the GAI was high, the FSIQ lost its
predictive validity in elementary school. In this subgroup of children, reading and writing skills were
best predicted by the CPI, whereas math skills were limited by the lowest score (i.e., the minimum
out of the CPI and the GAI).

Keywords: school performance; IQ; GAI; CPI; school grades; linear regression; learning disorders

1. Introduction

Results of intelligence tests are often used in childhood and adolescence to make
decisions about the adequate type of school, grade level, or support measures. Moreover,
the measured IQ is used as a predictor of school performance. In fact, IQ is a measure
that has surprisingly high reliability and predictive validity compared to many other
psychometric measures [1–3]. Nevertheless, there are also many individual cases where IQ
fails as a predictive measure of school performance. For example, children with learning
disorders often fall into this category. In fact, a striking discrepancy between perceived
intelligence and the inability to learn to read and write was already reported for one of the
earliest cases of dyslexia described in the scientific literature in 1896 [4]. The observation of
such a discrepancy was even so remarkable that it has long been the basis for the diagnosis
of learning disorders. While the DSM-5 [5] has now abandoned the ability–achievement
discrepancy as a requirement for diagnosing learning disorders, the ICD-11 definition [6]
still requires the affected academic skill to be markedly below what would be expected
for general level of intellectual functioning. To put it differently, the individual IQ must
by definition fail as a predictor of the academic skill in order for the learning disorder to
be diagnosed. Moreover, adverse external conditions such as economic or environmental
disadvantage, lack of instruction, or difficulties in speaking or understanding the language,
which also affect school performance, are explicit exclusion criteria for the diagnosis of a
learning disorders too [5,6].
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Some cases of learning disorder might result from the fact that there are other indi-
vidual factors besides intelligence that affect school performance. The most important
personality factors to be mentioned here are motivation, emotion, and conscientious-
ness [7,8]. As a consequence, depending on the measures used, the average correlation
between intelligence and school performance is only about r = 0.50 to 0.60 [3,9]. In many
cases, however, no such exceptional personality traits (e.g., very low motivation or very
high school anxiety) can be found either. In these cases, instead of the general level of
cognitive functioning or other personal traits, an alternative explanation for the poor school
performance could be the general heterogeneity of cognitive abilities in children with
learning disorders [10]. In fact, in addition to the striking discrepancies between ability
and school performance, children with learning disorders often exhibit exceptionally high
intraindividual differences between other cognitive abilities too. For example, children with
specific reading and/or writing disorder typically perform substantially below matched
control groups on measures of working memory and/or perceptual speed, but not necessar-
ily on measures of visual processing, fluid reasoning, or verbal comprehension [11–14]. For
children with specific problems in mathematics, the evidence is a little bit more complex.
Some studies showed that working memory is not only a specific predictor of reading and
writing skills, but also a predictor of mathematical skills [15]. By contrast, others demon-
strated that dyscalculia is typically accompanied by difficulties in fluid reasoning [2,16,17]
and/or visual processing [2,18]. Since many cognitive abilities can be low in children with
dyscalculia, it comes as no surprise that measures of general cognitive functioning (i.e., IQ)
on average are also lower in these children compared to control groups [2] and IQ usually
is a better predictor of mathematical skills than of reading and writing skills [3].

1.1. The Wechsler Intelligence Scales

Since the seminal work of Spearman in the early 20th century [19], it has been widely
acknowledged that different cognitive abilities are substantially correlated with each other,
indicating a latent general factor also referred to as “g”. However, there is still disagree-
ment on how the different facets of intelligence relate to each other and how they are
hierarchically structured. The most frequently used intelligence test today is the Wechsler
Intelligence Scale for Children (WISC) [2]. Like other widespread intelligence tests [20,21],
it is now predominantly aligned with the Cattell–Horn–Carroll (CHC) model of intelligence,
the latter being supported by an overwhelming body of evidence [22]. The CHC model,
which postulates three levels of varying specificity, contains more than 80 narrow cognitive
abilities (e.g., quantitative reasoning, auditory short-term storage, retrieval fluency etc.) on
level one, up to 17 broad abilities (e.g., fluid reasoning, working memory capacity, visual
processing, etc.) on level two, and a general factor on level three. This general factor is
predominantly inspired by Carroll’s three-stratum model of intelligence [1,23]. Carroll,
however, was not the first to propose a three-stratum model. In fact, Alexander [24] already
proposed a similar idea as early as 1935, stating that one common g-factor is not sufficient
to explain the covariances between individual cognitive abilities, but that there are several
other less general factors below the g-factor representing clusters of cognitive abilities.
Wechsler recognized the importance of Alexander’s work shortly thereafter [25]. However,
although he equally assumed that there were several such clusters, in his own intelli-
gence tests, he grouped the subtests into only two broad scales: a Verbal and a Performance
scale [26–28], noting that this was a content-based rather than a statistically verified group-
ing. Unfortunately, this second-level split far from corresponded to today’s differentiated
model of intelligence, both in terms of the number and the content of the ability clusters. It
was only after Wechsler’s death that the Wechsler scales were more closely adapted to the
empirical findings that had since been established. The WISC-III [29] was the first edition of
the Wechsler scales to offer four different indices below the level of the Full-scale IQ (FSIQ)
that roughly corresponded to the broad abilities described today in the CHC model. These
indices were called Verbal Comprehension, Perceptual Organization, Freedom from Distractibility,
and Perceptual Speed. The Perceptual Organization Index represented aspects of both visual



Children 2022, 9, 1635 3 of 15

processing and fluid reasoning. The Freedom From Distractibility Index combined several
broad abilities but had the highest emphasis on working memory. In fact, this scale was
later revised and renamed as the Working Memory Index in the WISC-IV [30]. In addition,
the fluid reasoning component was also increased in this edition of the test. The Perceptual
Organization Index was therefore renamed as the Perceptual Reasoning Index. The fifth edition
of the WISC [2] completed the shift towards the CHC model by splitting the Perceptual
Reasoning Index into the Visual Spatial Index and the Fluid Reasoning Index.

Nevertheless, the five-factor structure of the WISC-V has repeatedly been subject to
criticism. In particular, it was noted that, depending on the method and sample used, only
one to four factors could be extracted from the subtests with factor analysis [31–33]. The
development and critique of the Wechsler scales show that grouping subtests into broader
scales is not a one-way street. Accordingly, the WISC-V does not only provide a five-factor
structure. Alternatively, 9 out of 10 primary subtests can also be grouped into two broad
ancillary indices, namely the General Ability Index (GAI) and the Cognitive Proficiency Index
(CPI). This grouping is based on content as well as practical considerations in a manner
similar to David Wechsler’s division of the subtests into a verbal and a performance scale.
We will describe the content and possible use of the GAI and the CPI in more detail below.

1.1.1. GAI

The GAI was first developed for use with the WISC–III to offer additional flexibility
in the assessment of cognitive abilities [34]. The goal was to establish an index that is less
sensitive to the influence of working memory and perceptual speed. Consequently, eight
subtests from the Verbal Comprehension Index and the Perceptual Organization Index were
combined in the original scale, whereas subtests explicitly measuring working memory or
perceptual speed were excluded. The development of the GAI was largely driven by the
diagnosis of learning disorders, which at that time mandated a discrepancy between ability
and achievement, with the IQ score representing ability and tests on reading, writing, or
mathematics representing achievement. Consequently, special education services were
only granted when the IQ score was markedly higher than the results in the according
achievement tests. At the same time, it was well known that many children with learning
disabilities also have deficits in working memory and perceptual speed, which in turn
decreased the FSIQ in the WISC [34]. Thus, calculating an ability index without working
memory and perceptual speed increased the ability–achievement discrepancy and therefore
the chance of receiving special education services if school performance was markedly
below average.

Of course, the WISC has changed significantly from the third edition to the fifth edition.
These changes have also affected the GAI, which is now calculated from only five subtests,
namely similarities, vocabulary, block design, matrix reasoning, and figure weights. The
subtests are drawn from the Verbal Comprehension Index, the Visual Spatial Index, or the Fluid
Reasoning Index only. (The primary subtest, visual puzzles, from the Visual Spatial Index,
is not included.) All of these subtests are characterized by high g-loadings, ranging from
0.67 to 0.72 [2]. The GAI still excludes subtests measuring working memory and perceptual
speed and can therefore be interpreted as a broad scale of fluid reasoning containing verbal,
figural, as well as quantitative content.

1.1.2. CPI

The CPI is basically the counterpart to the GAI in that it combines all of the primary
subtests of the WISC that measure either working memory or perceptual speed. In the
WISC-V, the included subtests are digit span, picture span, symbol search, and coding.
These subtests on average show much lower g-loadings than the GAI subtests, ranging
from 0.36 to 0.65 [2]. The abilities measured in these scales are also often referred to by
the term executive functions [35] and are closely related to attentional control [22,36,37]. It
has to be noted, though, that the correlation between the Working Memory Index and the
Percepual Speed Index is rather low (r = 0.36). Hence, at first glance, it seems that the subtests
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form the Working Memory Index and the Perceptual Speed Index should not be combined into
another index beyond the FSIQ, since they appear to have little shared variance and almost
all of it is already captured in the FSIQ. What makes the CPI interesting to practitioners
nonetheless is that many clinical groups score exceptionally low on this specific index [38].
Specifically, they score below what would be expected based on the average FSIQ and
the correlation between the FSIQ and the CPI. For example, the data of clinical groups
presented in the WISC-V technical manual [2] indicate that this holds true for mildly and
moderately disabled children, for children with attention deficit/hyperactivity disorder
(ADHD), and for children diagnosed with autism spectrum disorder with or without
language impairment. (Note that for gifted children, the CPI on average is not below
what would be expected based on the FSIQ. Although it is well known that these children
usually score lower on the Working Memory Index and the Perceptual Speed Index than on the
Verbal Comprehension Index, the Visual Spatial Index, and the Fluid Reasoning Index [2,30], their
average CPI is actually only within the range one would expect based on the regression
toward the mean).

1.2. Rationale and Research Questions

Although the GAI is developed explicitly to diagnose learning disorders, its purpose
is not to directly predict school performance. Instead, the stated goal is to maximize the
ability–achievement discrepancy, which has long been considered an essential criterion of
learning disorders. Since the GAI is supposed to represent ability in this procedure, the
logical conclusion is that it cannot be a good predictor of academic skills. By contrast, it
must be a particularly poor one. Otherwise, it may not maximize the discrepancy between
ability and achievement.

On the one hand, this line of reasoning is misguided for two reasons. First, it has
repeatedly been demonstrated that IQ scores combining different verbal and non-verbal
subtests, such as the FSIQ in the WISC-V, are at least moderately good predictors of school
performance [3]. Since the GAI correlates to r = 0.96 with the FSIQ, the same must hold true
for the GAI. Second, if the FSIQ fails as a predictor of academic achievement for children
with learning disorders, then this should hold true for the GAI too. The question then is if
the GAI should be used at all to diagnose learning disorders. In fact, the requirement of an
ability–achievement discrepancy in the diagnosis of learning disorders has at least been
removed from the DSM.

On the other hand, it is consistent with both our practical experience and empirical
data that children with low school performance nevertheless often show exceptionally
large discrepancies between general measures of cognitive functioning and school perfor-
mance [11–17]. We therefore propose a more direct and parsimonious explanation for the
observed discrepancies, namely that they are not an indicator of the learning disorders
themselves. Instead, they can simply be interpreted as an indicator of an unusually high
heterogeneity among the individual cognitive abilities. Note that academic skills such as
reading, writing, and mathematical skills are perceived as broad cognitive abilities in the
CHC model. Thus, if these abilities deviate considerably from measures such as the FSIQ,
they must also deviate from at least some of the broad cognitive abilities that are captured
in the FSIQ.

Furthermore, we assume that the FSIQ usually is a good predictor of school perfor-
mance, but that it fails when heterogeneity among cognitive abilities is exceptionally high.
Although practitioners have long relied on the assertion that the validity of global scores of
intellectual functioning is diminished when heterogeneity across broad cognitive abilities is
exceptionally high [39], to the best of our knowledge, this assertion has never been directly
tested. Nevertheless, the assertion is highly plausible because the basis for calculating the
FSIQ is the assumption that all cognitive abilities share a substantial amount of common
variance. Hence, a specific cognitive ability should likely be low if the FSIQ is also low. Nev-
ertheless, apparently, for some children, the heterogeneity among their cognitive abilities
is much higher than expected on the basis of representative samples. Thus, this group of
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children exhibits considerably less common variance in their cognitive abilities. Therefore,
it can be assumed that for these children, scales such as the FSIQ or the GAI, representing
this shared variance, generally have low predictive validity for specific cognitive abilities,
especially if these specific cognitive abilities have relatively low g-loading, such as basic
reading and writing skills.

In this article, we wanted to analyze whether an exceptionally large discrepancy
between the GAI and the CPI is an easy-to-handle indicator of low predictive validity
of the FSIQ. To this end, we compared German-speaking children with and without an
exceptionally high discrepancy between the GAI and the CPI with regard to the correlations
between the FSIQ and school grades in mathematics and German. As is presumably
also the case in other languages/countries, the curriculum in German as a school subject
mainly focuses on basic reading and spelling skills in elementary school. In secondary
school, it covers a much broader range of language skills, with an emphasis on advanced
language and text comprehension as well as writing skills. We hypothesized that when
the discrepancy between the GAI and the CPI is high, the correlations between the FSIQ
and school grades in mathematics and German are significantly lower than when the
discrepancy is low. Moreover, we assumed that this effect would be even larger for
the grades in German than for the grades in mathematics because, as described above,
mathematical skills seem to depend equally on fluid reasoning and working memory.

Since it has repeatedly been demonstrated that the predictive validity of IQ scores is
generally lower in elementary school than in secondary school [3,40] (note that elementary
school in Germany usually covers only the first four years of school, beginning at the age of
six), we hypothesized that the predictive validity of IQ scores might also be more susceptible
to effects of heterogeneity in elementary school than in secondary school. We therefore
conducted all analyses separately for children in elementary vs. secondary schools.

If the FSIQ is indeed a poor predictor of school performance for children with excep-
tionally large discrepancy between the GAI and the CPI, then the question immediately
arises as to which is the best predictor of school performance in this particular group.
Specifically, the CPI might be a better predictor of reading and writing because the impor-
tance of working memory and perceptual speed for reading and writing has repeatedly
been demonstrated [12–14]. Moreover, because the CPI captures processes closely related to
attentional control [22,35–37], it may be particularly predictive in elementary school when
automation with regard to basic academic skills, such as reading fluency and spelling, is
still low. Mathematical skills, on the other hand, seem to correlate more strongly with IQs
than reading and writing skills. Therefore, despite reduced predictive validity, the FSIQ
might still be the best predictor of mathematical skills, even if the discrepancy between the
GAI and the CPI is exceptionally high.

However, there is also another possible explanation as to why the FSIQ might be a bad
predictor in the case of heterogeneous intraindividual cognitive abilities. The predictive
validity of the FSIQ is based on the assumption of a compensation model. Such models
assume that poor performance in one cognitive ability can at least partially be compensated
by good performance in the other abilities. However, school performance of children with
high heterogeneity in their cognitive abilities might be better explained by a deficit model.
In deficit models, the overall performance is limited by the lowest single determinant.
To explore the questions described above, we additionally modelled the data with lasso
regression (least absolute shrinkage and selection operator regression).

2. Materials and Methods
2.1. Sample

Since from the statistical point of view, exceptionality is defined by 5 to 10% of the
most extreme cases, and large samples are needed to gather enough exceptional cases for
statistical analysis. Therefore, we used two large standardization samples of the German
adaptations of the WISC-IV [41] and the WISC-V [42]. For some of these children, school
grades in mathematics and German were collected as part of validation studies. The
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WISC-IV sample comprised n = 1745 children, for whom school grades in German and
mathematics were available. These data were gathered between March 2005 and June 2006.
For the WISC-V, n = 825 complete datasets were available, collected between September 2015
and February 2017.

The data were collected in Germany (n = 2306), Austria (n = 121, WISC-IV only), and
Switzerland (n = 143, WISC-IV only), and included n = 1293 male and n = 1277 female chil-
dren, with n = 686 children attending elementary school and n = 1884 attending secondary
school. In elementary school, age ranged from 6.27 to 12.88 years (M = 9.32; SD = 1.10),
with most children being between 8 and 10 years old. Only 36 children were younger than
8 and 35 were older than 10. In secondary school, age ranged from 9.12 to 16.99 years
(M = 13.69; SD = 1.83). Overall, 19.6% of all children came from a household where at least
one parent was not a native German speaker. In the WISC-IV sample, this proportion was
only 15.1%, compared to 29.1% in the WISC-V sample, with different proportions reflecting
the respective census data at the time of the data collection. Children attending special
schools were generally not included in the analyses, because the grades at these schools
were usually difficult to compare with grades at other schools. However, only 3.2% of all
children of the original samples attended such schools. Apart from that, the total sample
can be considered nearly representative.

Table 1 shows the sample size as a function of age. As can be seen, the subsample sizes
for ages 6 to 8 were lower compared to all other age levels. This is because usually children
in Germany do not usually receive grades during the first two years of school.

Table 1. Sample size as a function of age.

Age Sample Size

6 18
7 18
8 164
9 275
10 243
11 332
12 325
13 298
14 297
15 301
16 251

Total 2570

2.2. Measures
2.2.1. Grades

The grades in Germany, Austria, and Switzerland ranged from 1 to 6, with 1 and 6 be-
ing the best and worst grade, respectively, in Germany and Austria, whereas in Switzerland
it was exactly the opposite. Therefore, all grades collected in Switzerland were recoded to
match the system of the other two countries.

2.2.2. FSIQ

The FSIQ was determined for both the WISC-IV and the WISC-V, as described in
the respective manuals, that is, in the case of the WISC-IV, the index was derived from
10 different subtests, whereas in the case of the WISC-V, only 7 subtests were used. Despite
the different number of subtests, the correlation between the corresponding FSIQ scores
of both instruments (corrected for the variability of the normative sample) is r = 0.89 [42],
which is almost as high as the test–retest correlation of the German WISC-V (rtt = 0.90). The
FSIQ scores of the WISC-IV and the WISC-V can therefore be regarded as almost equivalent.
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2.2.3. GAI

In the WISC-V, the GAI is derived from five different subtests, namely similarities,
vocabulary, block design, matrix reasoning, and figure weights. These subtests are drawn
from the Verbal Comprehension Index, the Visual Spatial Index, or the Fluid Reasoning Index.
Unfortunately, neither index scores for the GAI nor for the CPI were provided in the
original German adaptation of the WISC-IV. It was only several month later that index
scores were made available for the GAI [43]. Their calculation was based on the guidelines
proposed in the “Essentials of WISC-IV Assessment” [44]; thus, they were derived from
three verbal comprehension subtests (i.e., vocabulary, comprehension, and similarities) and
three perceptual reasoning subtests (i.e., block design, matrix reasoning, and picture concepts).
More precisely, the Verbal Comprehension Index and the Perceptual Reasoning Index were added
up to derive the GAI. In this article, however, we slightly deviated from this calculation
because we wanted to derive an index for the WISC-IV that is as similar as possible to
the WISC-V GAI. We therefore dropped the comprehension subtest, which is no longer a
primary subtest in the WISC-V and is not included in the GAI either. All other subtests
were retained. Note that we also had to keep the picture concepts subtest, because the
figure weights subtest did not yet exist. Hence, for all children in the WISC-IV sample, we
added up the scaled scores of similarities, vocabulary, block design, matrix reasoning, and
picture concepts. Subsequently, we performed inverse normal transformation to transform
the sum to normal scores. Finally, the normal scores were converted to index scores by
multiplying each score by the standard deviation of 15 and adding the mean score of 100.

The reliability coefficient of the WISC-V GAI, as indicated in the manual of the German
adaptation, is rtt = 0.95. For the WISC-IV, we estimated the overall reliability of the GAI
from the reliability coefficients of the five subtests using the formula of Nunnally and
Bernstein [45], i.e., rtt = 0.94.

2.2.4. CPI

In the WISC-V, the CPI is derived from digit span, picture span, symbol search, and
coding. Since picture span from the Working Memory Index did not yet exist in the WISC-IV,
we instead used letter–number sequencing to calculate the CPI in the WISC-IV sample. This
subtest served as the second subtest of the Working Memory Index in the WISC-IV. Hence,
for all children from the WISC-IV sample, we added up the scaled scores of digit span,
letter–number sequencing, symbol search, and coding. The subsequent transformation into
index scores was performed in the same way as for the GAI. The manual of the German
WISC-V reports a reliability coefficient of rtt = 0.93 for the CPI. For the WISC-IV, we again
estimated its overall reliability from the reliability coefficients of the subtests using the
formula of Nunnally and Bernstein [45]. The result was an overall reliability of rtt = 0.91.

2.3. Grouping

We assigned the children to two different groups based on their individual difference
between the GAI and the CPI. The first group consisted of the 10% most extreme cases and
the second group consisted of all remaining children. To this end, we first calculated the
difference between the GAI and the CPI. We subsequently determined the 10% most extreme
cases (5% on each tail of the distribution). This group included a total of 263 children
(131 with GAI − CPI ≤ −24 and 132 with GAI − CPI ≥ 23). Of these children, 64 attended
elementary school and 199 attended secondary school. The remaining 2307 children were
assigned to the second group of children with normal discrepancies between the GAI and
the CPI. In this group, 623 attended elementary school and 1684 attended secondary school.

2.4. Data Analysis
2.4.1. Comparison of Correlations

To determine whether the FSIQ predicted school performance significantly worse
when the discrepancy between the GAI and the CPI was extremely large, we first calculated
the correlations between the FSIQ and school grades. We performed this separately with
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regard to discrepancy (normal vs. large), subject (mathematics vs. German), as well as
the type of school (elementary school vs. secondary school). Subsequently, we compared
the correlations of children with large discrepancies between the GAI and the CPI to the
correlations of children with normal discrepancies. To this end, we applied the statistical
procedure described in [46]. The one-sided significance level was set to α = 0.05.

2.4.2. Lasso Regression

We also used lasso regression to further explore the data. In order to identify the best
predictor of school performance, we entered the GAI, the CPI, and the FSIQ as independent
variables in the regression. Furthermore, to test whether deficit models have higher
predictive validity than compensation models, at least for children with large discrepancies
between the GAI and the CPI, we additionally included the minimum out of the potential
predictors as an independent variable. The school grades in mathematics and German
served as separate dependent variables in the general linear models. Again, we modelled
the data separately with regard to discrepancies between the GAI and the CPI (normal vs.
large), the subject (mathematics vs. German), and the type of school (elementary school vs.
secondary school).

Lasso regression is particularly suited for these analyses because in the case of sev-
eral correlated predictors, it picks the best predictor while “punishing” the others [47].
Moreover, the glmnet package we used for modeling the data on the R platform [48] in-
cludes k-fold cross-validation as a standard procedure. Therefore, the package returns
parsimonious and stable linear models.

The regression parameter α was set to 1 for lasso regression. The number of folds for
the k-fold cross-validation was set to 10.

The glmnet package additionally includes a complexity parameter λ with small param-
eters, leading to a higher number of predictors. To avoid overfit, the authors of the package
recommend not using the λ, which achieves the smallest mean squared error (MSE) in the
cross-validation (i.e., the best fitting model). Instead, the default was set to the largest λ,
whereby the MSE in the cross-validation was within one standard error of the smallest
MSE (λ_1SE). However, in some cases, this default setting returned no predictor at all. This
was especially the case for the relatively small group of children with large discrepancies
between the GAI and the CPI. In these cases, we used the largest λ providing at least one
predictor. In all of these cases, the selected λ was only slightly smaller than λ_1SE.

3. Results
3.1. Comparison of Correlations

Table 2 contains the correlations between the different predictors (the FSIQ, the GAI,
or the CPI) and school grades as a function of discrepancy between the GAI and the CPI
(normal vs. large), the subject (mathematics vs. German), and the type of school (elementary
school vs. secondary school).

First of all, as expected, all correlations between the FSIQ and grades were significantly
negative (note that “1” represents the best grade in Germany and “6” represents the worst
grade) regardless of the subject, type of school, or discrepancy between the GAI and the CPI,
indicating that the FSIQ was in fact a significant predictor of school performance in all cases.

However, the correlations varied in magnitude. In elementary school, the correlations
between the FSIQ and grades tended to be higher for children with normal discrepancies
between the GAI and the CPI than for children with large discrepancies. This was true
both for the grades in mathematics (z = −1.639, p = 0.051) and in German (z = −1.636,
p = 0.051). Although both effects missed the 5% significance criterion by a very narrow
margin, it becomes clear that they nevertheless should not be neglected when looking at
the differences between both groups in terms of explained variance. In mathematics, the
FSIQ explained more than twice as much variance in the grades for children with normal
discrepancies than for children with high discrepancies (25.5% vs. 10.5%); in German, it
was even more than three times as much variance (20.2% vs. 6.7%).
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Table 2. Correlations between possible predictors (the FSIQ, the GAI, or the CPI) and grades in German
and mathematics as function of discrepancy between the GAI and the CPI and the type of school.

Discrepancy between
the GAI and the CPI

Elementary School Secondary School

Math Grade German Grade Math Grade German Grade

Normal

Correlation with the FSIQ −0.505 ** −0.449 ** −0.370 ** −0.348 **
Sig. (two-sided) 0.000 0.000 0.000 0.000

n 623 623 1684 1684

Correlation with the GAI −0.502 ** −0.419 ** −0.378 ** −0.319 **
Sig. (two-sided) 0.000 0.000 0.000 0.000

n 623 623 1684 1684

Correlation with the CPI −0.403 ** −0.402 ** −0.322 ** −0.351 **
Sig. (two-sided) 0.000 0.000 0.000 0.000

n 623 623 1684 1684

Large

Correlation with the FSIQ −0.324 ** −0.258 * −0.362 ** −0.317 **
Sig. (two-sided) 0.009 0.039 0.000 0.000

n 0 64 64 199 199

Correlation with the GAI −0.087 −0.055 −0.370 ** −0.226 **
Sig. (two-sided) 0.495 0.669 0.000 0.001

n 64 64 199 199

Correlation with the CPI −0.382 ** −0.363 ** −0.005 −0.164 *
Sig. (two-sided) 0.002 0.003 0.943 0.021

n 64 64 199 199

* Correlation significant with p < 0.05 (two-sided), ** correlation significant with p < 0.01 (two-sided).

In secondary school, the correlations for children with normal discrepancy were
slightly higher than the correlations for children with large discrepancy in numerical terms,
but the differences between the correlations fell far short of significance in both cases
(mathematics: z = −0.122, p = 0.451; German: z = −0.462, p = 0.322).

Unlike the FSIQ, the GAI and the CPI did not consistently predict school performance.
When the discrepancy between the GAI and the CPI was within a normal range, all cor-
relations of each of these scales with school grades were significant, but when it was
exceptionally large, some of them were not. Most notably, for children with large discrep-
ancies, the GAI only predicted school performance in secondary school but completely
failed as a predictor in elementary school. By contrast, the CPI was at least a moderately
good predictor in elementary school but almost completely lost its predictive validity in
secondary school when the discrepancy between the GAI and the CPI was large.

3.2. Lasso Regression

To find optimal prediction models of school grades for the different groups (normal vs.
large discrepancies between the GAI and the CPI), the types of school (elementary school
vs. secondary school), and the subjects (mathematics vs. German), we performed lasso
regression with the GAI, the CPI, the FSIQ, and the minimum out of these predictor scores.
The results of these analyses are listed in Table 3.

Overall, the models explained much more variance in elementary school than in
secondary school (22.5% vs. 13.8%; for calculating the variance proportions, the subsamples
were weighted according to their size). They explained slightly more variance in the math
grade as compared to the German grade (17.6% vs. 14.6%). Furthermore, they explained
slightly more variance when the discrepancy between the GAI and the CPI was normal as
compared to large (16.4% vs. 13.2%).

Interestingly, the GAI only occurred as a significant predictor of mathematics but never of
German, whereas the CPI was more important as a predictor of German compared to mathematics.

However, most importantly, the GAI, the CPI, and the minimum score as predictors
of school performance did not considerably increase the R-squared values (as compared
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to prediction with the FSIQ only) in three out of four subsamples. There was only one
subsample in which the explained variance was considerably increased, which was the
group of children in elementary school with a large discrepancy between the GAI and the
CPI. In this group, the prediction of school performance was improved both for the grades
in mathematics and German.

Table 3. Regression models to predict grades in German and mathematics from the GAI, the CPI, the
FSIQ, and the minimum out of these three predictors.

Discrepancy
between the GAI

and the CPI

Type of
School

n Subject
R Squared a

(comp. to
FSIQ Only)

Unstandardized Weights

Intercept GAI CPI FSIQ MIN b

Normal

Elementary
School 623

Math 0.261
(+0.006) 4.35 −8.75 × 10−3 −1.30 × 10−2

German 0.202
(+0.000) 3.96 −1.73 × 10−2

Secondary
School 1684

Math 0.147
(+0.011) 4.46 −1.08 × 10−2 −7.06 × 10−3

German 0.132
(+0.011) 4.10 −5.72 ×10−3 −6.89 × 10−4 −7.50 × 10−3

Large

Elementary
School 64

Math 0.186
(+0.081) 2.40 −1.07 ×10−3 −2.28 × 10−3

German 0.132
(+0.065) 2.51 −1.97 ×10−3

Secondary
School 199

Math 0.147
(+0.016) 3.38 −4.80 × 10−3 −5.94 × 10−4 −1.85 × 10−3

German 0.100
(+0.000) 2.86 −1.68 × 10−3

a R-squared values were computed for the whole subsample (not only the cross-validation groups). The value in
parentheses indicates the increase in R-squared values as compared to prediction with the FSIQ only (note that it
is not necessary to specify an adjusted R-squared value when using lasso regression, since overfitting is already
controlled by k-fold cross-validation). b MIN = minimum out of the GAI, the CPI, and the FSIQ.

Only one predictor was selected by lasso regression when the German grade was
the dependent variable, and this predictor was the CPI, not the FSIQ. The explained
variance was increased from 6.7% (prediction with the FSIQ only) to 13.2%; thus, it was
almost doubled. The gain of explained variance corresponds to a medium effect size of
d = 0.53 [49]. When the regression parameter lambda was slightly reduced to force more
predictors into the linear model, the minimum score was additionally selected as the second
most significant predictor. However, its weight was less than one-sixth that of the CPI and
therefore the inclusion of the minimum score as a second predictor did not significantly
increase the R-squared values.

In mathematics, the CPI was also selected as a significant predictor, but the predictor
with the highest weight was the minimum score. Its weight was even twice that of the
CPI. The explained variance increased from 10.5% (prediction with the FSIQ only) to 18.6%,
which also corresponds to a medium effect size of d = 0.59 [49].

4. Discussion

To determine whether the predictive validity of the FSIQ for school performance
depends on the homogeneity of the test results in the WISC and to find optimal prediction
models, we analyzed the significance of the FSIQ, the GAI, the CPI, or the minimum out
of these variables as predictors of grades in mathematics and German as a function of the
discrepancy between the GAI and the CPI. We performed this separately for children in
elementary vs. secondary school.

The analysis of the correlations between the different scores and school grades demon-
strated that the FSIQ alone was a significant predictor of school performance in all cases,
regardless of the subject (mathematics vs. German), the type of school (elementary school
vs. secondary school), or the discrepancy between the GAI and the CPI. However, for
children in elementary school, a large discrepancy between the GAI and the CPI tended
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to decrease the predictive validity of the FSIQ. The significance level was missed quite
narrowly, but the difference in terms of explained variance was so large that, in our opinion,
it cannot be ignored in terms of its practical implications. Moreover, the explained variance
in school grades was almost twice as high when predictors other than the FSIQ were used.

For the school grades in German, the CPI turned out to be the best predictor in this
specific group. This result highlights the importance of the cognitive abilities measured in
the CPI (i.e., working memory and perceptual speed) for the acquisition of basic reading
and writing skills. The importance of working memory—especially auditory working
memory—for these skills has repeatedly been shown in scientific literature [13,14]. Percep-
tual speed appears to play a more indirect role, mediated by attentional control, specifically
shifting, and inhibition [35]. In addition, fine motor skills are also closely related to per-
ceptual speed and could play a specific role in writing skills in elementary school. For
example, it has been shown that children with dyslexia not only have a deficit in spelling
but many of them also show difficulties in handwriting [50]. However, the etiology of such
comorbidities is not entirely clear. On the one hand, reduced perceptual speed could have a
direct causal effect on both the development of fine motor skills and spelling. On the other
hand, deficits in fine motor skills could also divert attentional resources from other tasks
such as spelling.

Unfortunately, our sample contained only few 6- and 7-year-old children. The reason
for this is that school grades in Germany are usually not assigned before the third-grade
level. However, we do not believe that this shortcoming calls into question the basic results.
On the contrary, it can be assumed that the influence of attentional control is even more
pronounced in the first two years of school because the automation of basic academic skills
is still extremely low at this early stage.

In line with this assumption, the predictive validity of the CPI for language skills
seems to decrease in secondary school, that is, when most of the processes involved in
basic reading and writing skills have been automated [9,51] and can therefore be performed
without attentional control. In addition, in secondary school, the native language curricu-
lum focuses much more on complex tasks, such as text comprehension and interpretation,
than on basic reading and writing skills. Therefore, the role of verbal comprehension
and fluid reasoning may be more important in secondary school compared to elementary
school. Importantly, however, there were only weak indications that deficit models would
markedly improve the prediction of the language skills in secondary school as compared to
compensation models. Hence, the FSIQ seems to be a valid predictor of language skills in
secondary school, even if the discrepancy between the GAI and the CPI is large.

In mathematics, the pattern was somewhat different. When the discrepancy between
the GAI and the CPI was large in elementary school, the most important predictor of the
grades was the minimum out of the GAI and the CPI. (Note that the FSIQ is never the
minimum score when the discrepancy between the GAI and the CPI is large.) This result sug-
gests that for children with large intraindividual heterogeneity between different cognitive
domains, compensation models provide suboptimal results with regard to the prediction
of mathematical skills, at least in elementary school. As mentioned in the introduction,
mathematical skills generally correlate more strongly with intelligence than reading and
writing. In addition, children with dyscalculia often show intraindividual weaknesses in
visual processing and fluid reasoning, but some of them also show intraindividual weak-
nesses in working memory and/or perceptual speed. The latter result already indicates
that individual deficits in determinants of mathematical ability can have a limiting effect on
the overall math performance. The results we obtained with lasso regression confirm this
assumption. Interestingly, in secondary school, lasso regression also favored a minimum
score over the FSIQ as a significant predictor of grades in mathematics, regardless of the
discrepancy between the GAI and the CPI. Admittedly, though, the prediction of math skills
was only slightly improved when using a deficit model as compared to prediction with the
FSIQ only. Therefore, the FSIQ will probably be a valid, reliable, and easy-to-use predictor
in secondary school in most cases, regardless of the subject or heterogeneity of the cognitive
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abilities. One must not forget, though, that the minimum score is highly correlated with the
FSIQ, with correlations above r = 0.90 in every single subgroup. However, this is exactly
why the advantage of deficit models presumably grows with the discrepancy between the
FSIQ and the minimum score.

In summary, we demonstrated that, at least in elementary school, the GAI and the
CPI can be used to markedly improve the prediction of school performance compared to
the use of the FSIQ only. Specifically, a large discrepancy between both indices indicates
a loss of predictive validity in the FSIQ. Of course, the question arises why one should
use atheoretical scales such as the GAI and the CPI for prediction purposes in the first
place, when the construct validity of the five primary indices used in the WISC-V is
empirically established. Unfortunately, we could not reliably test the prediction of school
performance with these five indices. Very large samples are needed to examine children
with exceptionally large discrepancies between the cognitive abilities, which was the reason
for compiling the German standardization samples of both the WISC-IV and the WISC-V.
However, there are relatively large differences between the primary scales in the WISC-
IV and the WISC-V, with the WISC-IV only providing four instead of five index scales.
We therefore leave this issue to future studies that may be conducted with the compiled
standardization samples of the WISC-V and the WISC-VI.

Although we faced a methodological barrier here, there are some theoretical and
practical reasons for using the GAI and the CPI instead of the five primary indices. First,
the GAI and the CPI are, on average, more reliable than the primary indices because they
are each based on more subtests. Second, two scales can be compared faster and easier to
each other than five different indices (simple difference score vs. complex profile analysis).
Apart from these aspects, the same caveat that applies to the FSIQ presumably also applies
to the two scales: the validity of the scales might be markedly decreased in case of too
much heterogeneity within each scale. To put it differently, using the five primary indices
probably does not significantly improve the prediction of academic achievement when
intraindividual heterogeneity within the GAI and the CPI is small, but it might do so when
heterogeneity is large. The use of the scales thus requires that homogeneity within the
scales is ascertained beforehand.

Unfortunately, there were also a few limitations which restrict the validity of our
results. First of all, the WISC-IV and the WISC-V contain different subtests, which is
why the GAI and the CPI were derived in slightly different ways in the two subsamples.
Specifically, we used two auditory working memory subtests to derive the CPI in the
WISC-IV subsample, whereas in the WISC-V, one auditory and one visual–spatial working
memory subtest enter the CPI. This difference might be important since auditory working
memory has been shown to be more important for reading and writing skills as compared to
visual–spatial working memory [13,52]. Therefore, the ancillary auditory working memory
scale of the WISC-V might have a higher predictive validity than the CPI. However, there
was no indication in our data that this is in fact the case.

Second, the FSIQ is derived from a different number of subtests in the two different
WISC versions. While all ten core subtests are used in the WISC-IV, “only” seven of the
ten primary subtests are used in the WISC-V. However, since the correlation between
the corresponding FSIQ scores of both instruments is almost as high as the test–retest
correlation of the German WISC-V, we do not think that the different number of subtests
plays a major role.

Third, the school system in Germany is such that after elementary school—which
in Germany usually covers only the first four years of school—children are assigned to
different school types based on their previous school performance. This system leads to
limited variance in the cognitive abilities of each individual type of school. Furthermore,
the same grade does not necessarily reflect the same level of proficiency when achieved
in different types of schools. Both factors lead to a reduced covariation in the secondary
school variables. Therefore, the validity of the models and results is probably markedly
lower in secondary school as compared to elementary school.
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Fourth, we used grades as dependent variables. They can be easily collected and were
therefore collected by default in the WISC-IV and WISC-V standardization. Nevertheless,
they have certain drawbacks too. First, the curriculum in German (as presumably in other
countries too) mainly focuses on basic reading and writing skills in elementary school
but covers a wide range of linguistic skills in secondary school, for example, knowledge
about different types of texts, literary periods, or authors. Therefore, the grade in German
measures very different skills and abilities in elementary school as compared to secondary
school. Second, grades usually are not normally distributed. Third, their variance is smaller
than that of standardized achievement tests. Fourth, they tend to be less reliable than
the results of standardized achievement tests because they are partly based on subjective
judgments and are therefore susceptible to various types of judgment biases. Therefore, the
variance explained by the different models was certainly less than it would have been if
standardized achievement tests were used as dependent variables.

Finally, it is well known that gifted children frequently score much lower on the
CPI as compared to the GAI. By contrast, the cognitive profiles of children with a below-
average IQ or intellectual disability are much more homogeneous on average [2,30]. Hence,
whether a certain discrepancy between the GAI and the CPI is actually exceptional or
not also depends on the general ability level of the child. The results obtained in this
study may therefore not apply equally to all levels of general cognitive ability. However,
methodologically, it is extremely difficult and costly to include the general ability level
as a qualifying factor in such studies, as this would require extremely large samples. In
particular, the question remains as to whether the abilities captured in the CPI are a limiting
factor for the acquisition of basic academic skills in gifted children to the same extent as in
children with an average or a below-average IQ score.

5. Conclusions

Decisions about school placement or support measures are often based solely on
IQ scores. Our analyses have shown that increased attention also needs to be paid to
heterogeneity in the intraindividual cognitive profile, especially in elementary school.
Unfortunately, the ICD-11 still requires academic performance to be below what would be
expected for chronological age and level of intellectual functioning in order to diagnose
learning disorders. To put it differently, a lack of predictive validity in the IQ score is
considered a necessary criterion of the disorder. Clearly, we showed that the predictive
validity of the FSIQ only decreases when the discrepancy between the CPI and the GAI
is exceptionally large. Hence, the affected children were in fact exceptional in certain
respects. However, exceptionality in and of itself is not necessarily a sign of pathology;
otherwise, giftedness would also have to be considered a disorder. In our opinion, it is
the low performance that makes the learning disorder a disorder, not the fact that existing
(and probably insufficient) predictive models fail. After all, no one would argue that cancer
is a disease and should be treated only if it was not expected for chronological age and
level of physiological functioning, or that a hurricane is only bad weather if the weather
forecast was wrong. The only difference is that the necessary actions can be taken earlier if
the forecast is correct.

In light of the findings described in this article, we consider it imperative that the
ability–achievement discrepancy criterion, which has long since been removed from the
DSM [5], will finally be removed from future versions of the ICD as well. As shown,
the expectation for academic achievement may turn out differently if intraindividual
heterogeneity in the cognitive abilities is taken into account in the prediction, at least
in elementary school. Most importantly, the prediction of academic achievement can be
improved if exceptionally high intraindividual deficits, such as weak working memory and
attentional control, are included as predictors instead of IQ alone.

Finally, our data have shown that cognitive measures are generally limited predictors
of school performance even when heterogeneity is included. However, whether and how
other factors, such as conscientiousness, motivation, or socioeconomic status, should be
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included in school decisions goes beyond the scope of this article because such data were
not contained in our samples.
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